
Intro to ROS

Pitt's Robotics and Automation Society 



What is ROS?

- ROS stands for Robot Operating System 
- NOT an operating system in the traditional sense 

- ROS is: 
- A build and installation system
- A development environment manager 
- A single or multi-machine launch system
- A single or multi-machine process “manager”
- A communication network
- A parameter managing service
- A community of open-source packages
- And so much more.

- http://ros.org 

http://ros.org


Today’s Plan

- For today, we are going to focus on: 
- Development environment manager 
- Single machine process manager
- Fundamentals of the ROS communication network
- Launching on a single machine

- Language of choice today will be Python
- If you don’t know Python, don’t worry- it has a very simple syntax you will be able to pick up on 

very quickly

- For more tutorials ranging from beginner to expert, always go to the ROS 
Tutorials and Wiki

- http://wiki.ros.org/ROS/Tutorials 
- http://wiki.ros.org/

http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/


Developer Environment

- ROS has what's called the ‘catkin workspace’ 
- Directory with all of the packages in your system in its ‘src’ 
- Inside src are your ‘catkin packages’ (tutorial) 

- From tutorial: 
- For a package to be considered a catkin package it must meet a few requirements:

- The package must contain a catkin compliant package.xml file.
- That package.xml file provides meta information about the package.

- The package must contain a CMakeLists.txt which uses catkin.
- If it is a catkin metapackage it must have the relevant boilerplate 

CMakeLists.txt file.
- Each package must have its own folder

- This means no nested packages nor multiple packages sharing the same 
directory.

http://wiki.ros.org/action/fullsearch/ROS/Tutorials/CreatingPackage


Making a Package

- Navigate to the part of the tutorial (here) and make a package called 
‘ras_workshop’

- If you need help, please let me know

http://wiki.ros.org/action/fullsearch/ROS/Tutorials/CreatingPackage#ROS.2BAC8-Tutorials.2BAC8-catkin.2BAC8-CreatingPackage.Creating_a_catkin_Package


Process Manager

- Processes (aka programs or apps) are called ‘Nodes’ 
- A Node is a single running process that (typically) does one particular thing

- Ex. roomba or cone detector node 

- Each Node should have a defined function and should not be codependent on 
any other

- Rather, it should only be dependent on its inputs (more on this later)
- There are exceptions to this, but 80% of the time it holds

- Tutorial: http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes 

http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes


Making our first Node

- Inside the ‘src’ folder of your new package, create a new folder called 
‘ras_workshop’

- NOTE: this is the typical layout of a Python package

- Create a file called `__init__.py` and save it (yes keep it empty)
- Create a file called my_first_node.py (or whatever else you like)

- Move on to example code here-> 
https://github.com/Pitt-RAS/ras_ros_workshop_example/blob/master/src/ras_workshop/node_e
xample.py 

https://github.com/Pitt-RAS/ras_ros_workshop_example/blob/master/src/ras_workshop/node_example.py
https://github.com/Pitt-RAS/ras_ros_workshop_example/blob/master/src/ras_workshop/node_example.py


ROS Communication

- Communication happens via messages 
- Ex. see std_msgs String here

- Topics define an exchange for messages, all of same type
- Multiple nodes can publish and listen to the same topics 
- Works across all nodes, no matter what language was used to write it
- Typically have a concept of “publishers and subscribers”

http://docs.ros.org/melodic/api/std_msgs/html/msg/String.html


Publishing and Subscribing: Examples

- A node can “publish” to a topic
- Create an example node

- See here 

- Message is broadcast to all subscribers listening on that topic
- Create an example subscriber 

- See here 

https://github.com/Pitt-RAS/ras_ros_workshop_example/blob/master/src/ras_workshop/pub_node.py
https://github.com/Pitt-RAS/ras_ros_workshop_example/blob/master/src/ras_workshop/sub_node.py


Launching

- ROS makes it easy to define launch files that start all your nodes, load your 
parameters into ROS, map topics, and so much more

- Make a launch file for our publisher and subscriber 
- See here 

https://github.com/Pitt-RAS/ras_ros_workshop_example/blob/master/launch/pub_sub.launch


Further Resources

- Only covered rospy (not roscpp)
- But the concepts learned here apply in C++
- Introduce complexities of building C++ nodes

- The ROS tutorial and ROS Wiki are well laid out and provides a ton of useful 
information 

- http://wiki.ros.org/ROS/Tutorials 
- http://wiki.ros.org/

- Feel free to always ask questions

http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/


Questions?


