
Intro to

Micah Nye
Autonomous Racing Lead

Agenda

● What is ROS

● ROS Fundamentals

● Tutorial using ROS CLI

● Tutorial writing ROS

● Advanced Demo

● Takeaways & Q&A

Questions always!

Key Objectives

● Understanding of what ROS is and why we use it

● Good foundation built for ROS fundamentals

● Understanding of ROS CLI

● Entry-level comfort with writing ROS nodes

What is ROS?

What is ROS?

● The Robot Operating System (ROS) is a set of software libraries and tools

for building robot applications

What is ROS NOT?

● An operating system

● A language

● The holy grail

What is ROS?

● A build and installation system

● A communication network

● A development environment manager

● A single or multi-machine launch system

● A single or multi-machine process “manager”

● A parameter managing service

● A community of open-source packages

Why ROS?

● Initially ideated by Roboticists at Stanford,

Keenan Wyrobeck and Eric Berger
○ Everyone kept reinvented the wheel and this

stunted progress

○ Created to have a unified, universal set of

tools for all researchers and students to use so

they don’t need to redo the grunt work every

time

● Development taken on by Willow Garage

in 2008

● Open Robotics takes on development

after in 2013

ROS History

Taken from original slide deck of Wyrobeck and Berger

https://www.slideshare.net/KeenanWyrobek/personal-robotics-

program-fund-fundraising-deck-from-2006

https://www.slideshare.net/KeenanWyrobek/personal-robotics-program-fund-fundraising-deck-from-2006
https://www.slideshare.net/KeenanWyrobek/personal-robotics-program-fund-fundraising-deck-from-2006

Why ROS?

● Learning about robotics with many easy-to-use tools

● Unified interface for communication

● Fast and easy development for projects, research, industry*

● Global community with massive bank of knowledge

● Useful on many platforms – Linux, Windows, MacOS, Microcontrollers, even

Android!

● Useful for many languages – C++, Python, C, Matlab, Java, etc.

● Open source

Why ROS?

Top Left to Bottom Right:

MIT-PITT-RW, F1-tenth,

IsaacROS, Turtlebot3,

IsaacSim Quadrotor Sim,

CMU AirLab

TartanDrive/SARA Project

ROS Versions – Which ROS to use?

● What ROS Version? ROS1 or ROS2?
○ ROS2 Strongly Recommend

○ Why?

■ Active development

■ More platform support

■ Better networking (transport and

architecture)

■ Better threading and process

management

■ Better parameter management

○ See paper from ROS devs

○ See article

Steven Macenski et al., Robot Operating System 2: Design, architecture, and uses in the wild.Sci.

Robot.7,eabm6074(2022).DOI:10.1126/scirobotics.abm6074

https://www.science.org/doi/10.1126/scirobotics.abm6074
https://medium.com/@oelmofty/ros2-how-is-it-better-than-ros1-881632e1979a
https://doi.org/10.1126/scirobotics.abm6074

ROS Versions – Which Distribution (Distro)?

…
“v6”“v7”“v8”“v9”

Ubuntu 22.04

Windows 10

MacOS

Ubuntu 22.04

Windows 10

Ubuntu 20.04

MacOS

Ubuntu 20.04

Windows 10

Ubuntu 20.04

Windows 10

MacOS

P
la

tf
o
rm

s
D

is
tr

o

Nov 2024 May 2027 EOL EOL

E
O

L

ROS Versions – Which Distribution (Distro)?

…
“v6”“v7”“v8”“v9”

Ubuntu 22.04

Windows 10

MacOS

Ubuntu 22.04

Windows 10

Ubuntu 20.04

MacOS

Ubuntu 20.04

Windows 10

Ubuntu 20.04

Windows 10

MacOS

P
la

tf
o
rm

s
D

is
tr

o

Nov 2024 May 2027 EOL EOL

E
O

L

How ROS works

Overview

● Nodes

● Messages

● Topics

● Parameters

● Services

● Actions

● The primary building block for robot software with ROS

● Executable processes that communicate over the ROS graph

● Examples of nodes:
○ Motor controller

○ Path follower

○ Sensor data receiver (Laser range finder, Camera streams)

○ Actuator or Sensor Drivers

Nodes

Topics

● A “bus” that exchanges information (data) between nodes

● Nodes can send data on multiple topics (buses)

● Nodes can receive data from multiple topics (buses)

● How is our data represented?

Sending Data

Receiving Data

Topics

● A topic name: ”/my_topic_name”

● How is our data represented? Sending Data

Receiving Data

Messages

● A data structure for node communication

● A container to transfer data among nodes

● A building block to make more customized messages
Sending Data

Receiving Data

Messages

Datatype Field name

Simple Message

How do I unpack the data? my_data = msg.data

How do I unpack the Point data? x_value = msg.x

Messages

Datatype Field name

Less Simple Message

Messages

Datatype
???

Field name

More Complex Message

How do I unpack the Pose data? x_value = msg.position.x

Messages

Datatype
(but also a
message!)

Field name

More Complex Message

Subscriber

● A component listening for a specific topic

○ The house waiting for the bus

○ A receiver tuned to a specific channel on a radio

● 1 of 2 major components for node communication

Sending Data

Subscriber

Subscriber

● What are we listening to?
○ A specific topic name

● How do we receive the data?
○ From a callback function

● How do we unpack the data?
○ Read the message

Sending Data

Subscriber

● A component sending data on that specific topic

○ A transmitter

○ A broadcaster on a radio

● 1 of 2 major components for node communication

Publisher

Publisher

Subscriber

● What are we sending data on?
○ A specific topic name

● How do we send the data?
○ From a publisher object

● How do we pack the data?
○ Create and populate a message

Publisher

Publisher

Subscriber

Multi-node graphs

● Many nodes can listen and publish to the same topics

● This builds complex robotic architectures

Parameters

● “Node settings” – A configurable value for a node

● A way to update numbers/settings in real-time without having to rebuild your

package

Services

● An alternative method for communication on the ROS graph

● Call and response
○ Only receive/provide data when specified

○ Not continually updated

Actions

● Another communication type on the ROS graph

● Useful for long-running tasks, more intricate

● Goal-oriented communication

● Goal, Feedback, Result

○ Goal – Desired outcome/task

action server should accomplish.

Send by client node

○ Feedback – Continuous updates

on progress of action from server

○ Result – Final message sent

from server to alert status

(success/fail)

Command Line

Turtlesim Playground Tutorial

ROS Command-line interface (CLI)

● We interface with ROS nodes and anything ROS

through the CLI

● Every ROS command begins with ros2 …

● Run a node (start the communication and do the

things!)
○ ros2 run turtlesim turtlesim_node

Hey little

guy :)

● Tab complete is your best friend
○ Shows viable subcommands you can

execute or flags/arguments to pass

● You can generally do:
○ ros2 {node/topic/param/service} list

○ ros2 {node/topic/param/service} info

Exploring ROS CLI – General Information

{tab complete}

● How is my turtle moving? Let’s find

out!
○ Remember, most commands are sent

over topics so that’s a good place to start

Exploring ROS CLI – Data

● Let’s see what we can do with

parameters

● Tab completing shows us what we

can do and what it changes

Exploring ROS CLI – Parameters

{tab complete}

{tab complete}

{tab complete}

We changed a

ROS node setting!

More Common CLI Commands

● ros2 launch

● ros2 bag

● ros2 msg show

● ros2 interface

Hey little

guy :)

rqt_graph

● Visualizing the ROS Graph

● rqt_graph

Developer Environment

● A directory with a specific structure

● Inside is where our ROS packages reside

● An environment overlay to be sourced

Workspaces

File Explorer Terminal

Packages

● An organizational unit for ROS code and nodes

● C++ Contents:
○ Package.xml – Meta information about the package (Version, Maintainer, Dependencies,

Licenses, etc.)

○ CMakeLists.txt – Recipe for compiler to follow to build your code (Flags, executables, include

directories, packages, etc.)

○ src – Folder (directory) containing our source code – the code that actually does stuff and has

nodes

● Python Contents
○ Package.xml – Meta information about the package (Version, Maintainer, Dependencies,

Licenses, etc.)

○ setup.cfg – File to let ROS find our executable python files

○ setup.py – Instructions for how to install package

○ __init__.py – Helps ROS find your package

● Like much of ROS, packages are modular!
○ They can be used across workspaces (if installed or relocated

and dependencies are met)

○ You can even mix C++ and Python packages in the same

workspace!

■ Beauty of ROS backbone communication

Packages

workspace_folder/
└── src/

├── cpp_package_1/
│ ├── CMakeLists.txt
│ ├── include/cpp_package_1/
│ ├── package.xml
│ └── src/
├── py_package_1/
│ ├── package.xml
│ ├── resource/py_package_1
│ ├── setup.cfg
│ ├── setup.py
│ └── py_package_1/
├── ...
└── cpp_package_n/

├── CMakeLists.txt
├── include/cpp_package_n/
├── package.xml
└── src/

● Colcon is our build tool

● This creates
○ /build directory – Intermediate files are auto-generated and stored (CMake)

○ /install directory – Package gets installed into here

○ /log directory – Logging information from build gets stored here

● You can set build flags to fit the build process to your needs

● You need to rebuild your package to update the installation and build with

your new changes

Building your package

Creating ROS Nodes
Talker and Listener Tutorial in Python

No ROS on Laptop? No worries! Follow along on
https://rosonweb.io/

https://rosonweb.io/

Creating your workspace

Creating your package

Creating your Publisher

import rclpy
from rclpy.node import Node

from std_msgs.msg import String

class MinimalPublisher(Node):

def __init__(self):
super().__init__('minimal_publisher')
self.publisher_ = self.create_publisher(String, 'topic', 10)
timer_period = 0.5 # seconds
self.timer = self.create_timer(timer_period,

self.timer_callback)
self.i = 0

def timer_callback(self):
msg = String()
msg.data = 'Hello World: %d' % self.i
self.publisher_.publish(msg)
self.get_logger().info('Publishing: "%s"' % msg.data)
self.i += 1

…

…

def main(args=None):
rclpy.init(args=args)

minimal_publisher = MinimalPublisher()

rclpy.spin(minimal_publisher)

Destroy the node explicitly
(optional - otherwise it will be done automatically
when the garbage collector destroys the node object)
minimal_publisher.destroy_node()
rclpy.shutdown()

if __name__ == '__main__':

main()

https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Py-Publisher-And-Subscriber.html#write-the-publisher-node

Creating your Subscriber

import rclpy
from rclpy.node import Node

from std_msgs.msg import String

class MinimalSubscriber(Node):

def __init__(self):
super().__init__('minimal_subscriber')
self.subscription = self.create_subscription(

String,
'topic',
self.listener_callback,
10)

self.subscription # prevent unused variable warning

def listener_callback(self, msg):
self.get_logger().info('I heard: "%s"' % msg.data)

…

…

def main(args=None):
rclpy.init(args=args)

minimal_subscriber = MinimalSubscriber()

rclpy.spin(minimal_subscriber)

Destroy the node explicitly
(optional - otherwise it will be done automatically
when the garbage collector destroys the node object)
minimal_subscriber.destroy_node()
rclpy.shutdown()

if __name__ == '__main__':

main()

https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Py-Publisher-And-Subscriber.html#write-the-subscriber-node

Update Package.xml and setup.py

<?xml version="1.0"?>

<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>

<package format="3">

<name>py_pubsub</name>

<version>0.0.0</version>

<description>TODO: Package description</description>

<maintainer email="micahnye31@gmail.com">micahnye</maintainer>

<license>TODO: License declaration</license>

<test_depend>ament_copyright</test_depend>

<test_depend>ament_flake8</test_depend>

<test_depend>ament_pep257</test_depend>

<test_depend>python3-pytest</test_depend>

<exec_depend>rclpy</exec_depend>

<exec_depend>std_msgs</exec_depend>

<export>

<build_type>ament_python</build_type>

</export>

</package>

from setuptools import setup

package_name = 'py_pubsub'

setup(

name=package_name,

version='0.0.0',

packages=[package_name],

data_files=[

('share/ament_index/resource_index/packages',

['resource/' + package_name]),

('share/' + package_name, ['package.xml']),

],

install_requires=['setuptools'],

zip_safe=True,

maintainer='micahnye',

maintainer_email='micahnye31@gmail.com',

description='TODO: Package description',

license='TODO: License declaration',

tests_require=['pytest'],

entry_points={

'console_scripts': [

'talker = py_pubsub.publisher_member_function:main',

'listener = py_pubsub.subscriber_member_function:main',

],

},

)

Building the package

● Inside workspace, colcon build

● Don’t forget to source the overlay of your workspace!

source install/setup.bash

Testing our nodes

Autonomous Racing with

ROS!
Complex System Demo

http://www.youtube.com/watch?v=BUwCTJfVVbk

● ROS is a powerful tool for projects, research, and industry*, but it is not the

only option

● ROS is a modular framework that builds complex systems using Nodes on

the ROS graph

● Topics are a primary form of communication between Nodes

● ROS CLI is used for running code and useful for debugging and visualization

into what’s going on behind the scenes

● Never be afraid to poke around and explore ROS!

Final Takeaways

What’s Next?

● Bagging
● Rviz & Visualization
● Plotjuggler
● Custom Messages
● Quality of Service for Subscribers and Publishers
● ROS_DOMAIN_IDs
● Specified Executors
● Containers & Components
● Parameter Configurations
● Callback groups
● RMW and DDS
● …

Thank you :)
Micah Nye

	Slide 1: Intro to
	Slide 2: Agenda
	Slide 3: Key Objectives
	Slide 4: What is ROS?
	Slide 5: What is ROS?
	Slide 6: What is ROS?
	Slide 7: Why ROS?
	Slide 8: ROS History
	Slide 9: Why ROS?
	Slide 10: Why ROS?
	Slide 11: ROS Versions – Which ROS to use?
	Slide 12: ROS Versions – Which Distribution (Distro)?
	Slide 13: ROS Versions – Which Distribution (Distro)?
	Slide 14: How ROS works
	Slide 15: Overview
	Slide 16: Nodes
	Slide 17: Topics
	Slide 18: Topics
	Slide 19: Messages
	Slide 20: Messages
	Slide 21: Messages
	Slide 22: Messages
	Slide 23: Messages
	Slide 24: Subscriber
	Slide 25: Subscriber
	Slide 26: Publisher
	Slide 27: Publisher
	Slide 28: Multi-node graphs
	Slide 29: Parameters
	Slide 30: Services
	Slide 31: Actions
	Slide 32: Command Line
	Slide 33: ROS Command-line interface (CLI)
	Slide 34: Exploring ROS CLI – General Information
	Slide 35: Exploring ROS CLI – Data
	Slide 36: Exploring ROS CLI – Parameters
	Slide 37: More Common CLI Commands
	Slide 38: rqt_graph
	Slide 39: Developer Environment
	Slide 40: Workspaces
	Slide 41: Packages
	Slide 42: Packages
	Slide 43: Building your package
	Slide 44: Creating ROS Nodes
	Slide 45: Creating your workspace
	Slide 46: Creating your package
	Slide 47: Creating your Publisher
	Slide 48: Creating your Subscriber
	Slide 49: Update Package.xml and setup.py
	Slide 50: Building the package
	Slide 51: Testing our nodes
	Slide 52: Autonomous Racing with ROS!
	Slide 53
	Slide 54: Final Takeaways
	Slide 55: What’s Next?
	Slide 56: Thank you :)

